A -approximation algorithm for Graphic TSP in cubic bipartite graphs

نویسندگان

  • Jeremy Karp
  • R. Ravi
چکیده

We prove new results for approximating Graphic TSP. Specifically, we provide a polynomialtime 9 7 -approximation algorithm for cubic bipartite graphs and a ( 9 7 + 1 21(k−2) )-approximation algorithm for k-regular bipartite graphs, both of which are improved approximation factors compared to previous results. Our approach involves finding a cycle cover with relatively few cycles, which we are able to do by leveraging the fact that all cycles in bipartite graphs are of even length along with our knowledge of the structure of cubic graphs. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 9/7 -Approximation Algorithm for Graphic TSP in Cubic Bipartite Graphs

We prove new results for approximating Graphic TSP. Specifically, we provide a polynomial-time 9 7 -approximation algorithm for cubic bipartite graphs and a ( 9 7 + 1 21(k−2) )-approximation algorithm for k-regular bipartite graphs, both of which are improved approximation factors compared to previous results. Our approach involves finding a cycle cover with relatively few cycles, which we are ...

متن کامل

Improved Approximation Algorithms for Graph-TSP in k-Regular Bipartite Graphs

We prove new results for approximating Graph-TSP. Speci cally, we provide a polynomial-time 9 7 approximation algorithm for cubic bipartite graphs and a ( 9 7 + 1 21(k−2) )-approximation algorithm for k-regular bipartite graphs, both of which are improved approximation factors compared to previous results. Our approach involves nding a cycle cover with relatively few cycles, which we are able t...

متن کامل

RIMS-1826 Approximation Algorithms for the Minimum 2-edge Connected Spanning Subgraph Problem and the Graph-TSP in Regular Bipartite Graphs via Restricted 2-factors By

In this paper, we address the minimum 2-edge connected spanning subgraph problem and the graph-TSP in regular bipartite graphs. For these problems, we present new approximation algorithms, each of which finds a restricted 2-factor close to a Hamilton cycle in the first step. We first prove that every regular bipartite graph of degree at least three has a square-free 2-factor. This immediately l...

متن کامل

Graphic TSP in 2-connected cubic graphs

We prove that every simple 2-connected cubic n-vertex graph contains a spanning closed walk of length at most 9n/7 − 1, and that such a walk can be found in polynomial time. This yields a polynomial-time 9/7-approximation algorithm for the graphic TSP for 2-connected cubic graphs, which improves the previously known approximation factor of 1.3 for 2-connected cubic graphs. On the negative side,...

متن کامل

Graphic TSP in Cubic Graphs

We present a polynomial-time 9/7-approximation algorithm for the graphic TSP for cubic graphs, which improves the previously best approximation factor of 1.3 for 2-connected cubic graphs and drops the requirement of 2-connectivity at the same time. To design our algorithm, we prove that every simple 2-connected cubic n-vertex graph contains a spanning closed walk of length at most 9n/7− 1, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 209  شماره 

صفحات  -

تاریخ انتشار 2016